Membrane Switch Defined

Membrane Switch Defined

What is a Membrane Switch?

membrane switch is an interface between man and machine, enabling an operator to communicate with equipment, instrumentation, or machinery. A membrane switch is a printed or etched electronic circuit that uses pressure to open and close a circuit. The membrane switch circuitry can be: screen printed using conductive inks which are typically made of silver or carbon, etched copper on Kapton, or can be printed circuit board based. The membrane switch overlay is typically made of polyester, polycarbonate, or molded silicone rubber. Membrane switches are part of a range of devices considered to be user interfaces or human machine interfaces (HMIs) along with touch screens and mechanical switches.

Membrane Switch Construction

A typical membrane switch assembly typically consists of six to seven main layers:

  • Graphic Overlay – Graphic overlays are typically constructed of polyester, the material of choice due to its superior chemical resistance and flex life compared to polycarbonate. CSI can either digitally print, screen-print, or employ a combination of both methods to insure you get the right colors, textures, and finishes your Silver Flex membrane switch design requires.
  • Overlay Adhesive – The overlay adhesive layer bonds the graphic overlay to the top circuit layer. This overlay adhesive is typically an acrylic adhesive, selected for its durability and ability to maintain adherence in atypical environments, such as moist environments.
  • Top Circuit Layer – Typically a .005″ – .007″ heat-stabilized, polyester printed layer with silver-filled, electrically conductive inks and dielectric inks. This layer can also encapsulate metal domes or incorporate polydomes, which are used to achieve tactile feedback, an important design consideration impacting usability.
  • Circuit Spacer – This layer separates the top circuit from the bottom circuit, so the switch remains normally open until the keypad is pressed. The circuit spacer is a polyester spacer with adhesive on both sides.
  • Lower Circuit Layer – The lower circuit layer is typically a .005″ – .007″ heat-stabilized, polyester-printed layer with silver-filled electrically conductive inks and dielectric inks. This layer terminates as a flexible tail that serves as the interconnect to controller PCB’s or other electronics.
  • Rear Adhesive Layer – This adhesive layer bonds the entire membrane switch package to the product enclosure, housing, or to a rigid support panel. CSI can specify the appropriate adhesive type and thickness to bond your membrane keypad to your equipment.
  • Rigid Support Layer – This optional layer can add structural integrity to the membrane switch assembly. Materials can be aluminum, FR-4, steel, etc. Mounting hardware such as studs and standoffs can also be utilized in this layer.
Membrane Switch Guide

Copper Flex Membrane Switches

The Copper Flex Membrane Switch constructions are ideal for smaller designs, where space is at a premium, or where dense circuit patterns or trace routing limitations exist. Copper Flex membrane keypads utilize silver or copper layers which are laminated to a dielectric layer and etched away.

This switching technology combines the ability to accommodate the complex circuit patterns of a FR4 rigid printed circuit board with the flexibility of a membrane switch. Copper Flex keypads also have the advantage of being able to “hard” solder both active and passive components into the assembly, making it a good choice in high-vibration environments.

Copper Flex membrane switch panels can be produced using polyester or polyimide (Kapton) as the base material depending on your interface requirements. A very thin sheet of copper is laminated to the flexible film substrate then chemically etched away, leaving copper traces. 

Copper Flex membrane switches offer you a variety of design options:

  • Single and double sided designs
  • Lower electrical resistance and higher conductivity vs. traditional Silver Flex membrane switches
  • Tight trace routing capabilities
  • Thin profile and flexibility of Silver Flex membrane switch
  • Plating options can be tin-lead, nickel, or gold
  • Tactile and non-tactile with either metal or polyester tactile domes
  • LED’s and other components can be soldered
CSI Keyboards Medical Membrane Switch

PCB Based Membrane Switches

The PCB Membrane Switch construction utilizes a printed circuit board (PCB) which can serve a dual purpose in your membrane switch design. PCB Switches are typically more costly than Silver Flex membrane keypads, but can accommodate dense circuit patterns and more complex circuit patterns compared to Silver Flex membrane keypads.

A PCB membrane switch also allows the electronic components to be “hard-soldered” into the PCB, whereas membrane switch components are placed using a polymer thick film conductive paste. With a PCB membrane switch, the PCB can serve as a rigid backer, and is also a very durable and reliable method to incorporate LED’s, resistors, LCD’s and other components.

CSI Keyboards PCBA Rubber Keypad

PCB membrane keyboards offer you a variety of design options:

  • Tactile and non-tactile with either metal or polyester tactile domes
  • Pillow or rim-embossed graphic overlays
  • Embedded LED’s that are soldered directly into the PCB
  • Fiber Optic backlighting
  • EL – (Electroluminescent backlighting)
  • Rigid backers such as aluminum and FR4
  • EMI/RFI shielding
  • Unlimited choice of connectors, which can be soldered directly into the PCB

Silicone Elastomer Rubber Keypads

Silicone rubber keypads use compression-molded silicone rubber with conductive carbon pills or with non-conductive rubber actuators.  They have exceptional resistance to extreme temperatures and aging, making them an ideal choice if reliability is a prominent concern due to likely environmental influences.

A rubber membrane switch uses compression-molded silicone rubber with conductive carbon pills or with non-conductive rubber actuators. Rubber keypads are relatively inexpensive on a per-piece basis, but require fairly expensive tooling, usually making them a design choice for higher-volume projects.

Silicone rubber keypad switches have numerous features that set this type apart from other traditional membrane switch designs. Some of the main differentiating features of this type make the silicone rubber keypad switch an ideal choice for applications requiring more durability or better resistance to exposure to moisture, chemicals, or other compounds.

Molded rubber keypad: copper flex circuit based with domes and backlit keys

Some of the primary distinctive features of silicone rubber keypad switches include:

  • Work as a conductive shorting device for Silver Flex membrane switchesPCB membrane switches, and Copper Flex membrane switches
  • Can utilize carbon pills, non-conductive rubber actuators, or stainless steel tactile domes
  • Actuation forces and switch travel can be customized
  • Any shape or size can be designed
  • Multiple colors can be achieved by flow molding the color during the compression-molding process
  • Rubber keypad top graphics can be customized by screen-printing
  • Rubber keypad switches can be PU spray-coated for enhanced durability
  • Rubber membrane switches have excellent weatherability for outdoor use
  • Can be designed to seal the keypad assembly from moisture and contaminants
  • Silicone rubber is resistant to chemicals and moisture
  • Laser etching the rubber keypads can allow for backlighting individual keypads
  • Backlighting options

CSI Develops Heavy Duty Military Keypad

CSI Develops Heavy Duty Sealed Military Keypad

Product: Heavy Duty Military Keypad

Case: Customer approached CSI requiring an environmentally sealed keypad solution that would not only be able to withstand constant outdoor usage, but more importantly withstand exposure to mustard & sarin gas. 

CSI Final Solution:

  • Liquid-Injection Molded Santoprene (mustard and sarin gas resistant) with debossed graphics and LED indicators
  • 100% environmentally sealed keypad that passes all of the customer’s requirements including mustard and sarin gas resistance.
  • Metal dome switches with LED indicators with additional customer electronics/components integrated into the circuit
  • Copper flex circuit for additional environmental durability
  • Stainless steel backer for rigidity

CSI Develops Sealed Rubber Keypad for Military

CSI Develops Sealed Rubber Keypad for Military

Product: Military Keypad

Case: Customer approached CSI requiring a backlit and sealed rubber keypad solution that would be able to withstand heavy usage outdoors. It was critical for the customer to be able to mechanically mount the keypad into their case.

CSI Final Solution:

    • Rubber keypad with 4 dome switches
    • Keypad backlit using LEDs and rubber with laser etched symbols
    • Printed circuit board based assembly with dome switches, LEDs, and rear mounted connector
    • Rubber designed and manufactured to wrap around PCB in order to completely seal the keypad’s circuitry
    • Rear aluminum backer with threaded studs for mechanically mounting

Utilizing Mesh for Keypad EMI Shielding

Utilizing Mesh for Keypad EMI Shielding ​

Do you have a product that has stringent EMI shielding requirements? CSI can integrate EMI mesh into your keypad assembly using the finest woven blackened wire mesh. The mesh is blackened to make it suitable for optical applications such as applying over displays or under windows. 

EMI protection will be provided by covering the entire keypad, display and LED conductors, etc. with wire mesh. The mesh is typically 80 x 80 density, of .0011 inch diameter stainless steel wire strands.  It is an interwoven fabric, silver coated, and then blackened. The mesh shall be in direct electrical contact when attached to the enclosure. The woven mesh is highly conductive for the best EMI shielding effectiveness and is even and very black avoiding highly reflective un-blackened wires and discolorations.

Integrating the Mesh into the Design:

  1. The mesh is die-cut to the shape of the keypad and then assembled into the internal layers of the keypad assembly.
  2. CSI will work closely with you in determining the best method to make direct electrical contact between the EMI mesh and your product when the keypad is assembled to your enclosure.
Membrane Switch with EMI Mesh

Redesigning your Existing Membrane Switch

Redesigning your Existing Membrane Switch​

Every week, we are approached by a customer that is having issues with a membrane switch or keypad designed by another manufacturer. More often than not, the membrane switch was not engineered properly when it was originally developed. Typically, the membrane switch is failing out in the field due moisture ingress and lack of sealing characteristics.

Because this is such a common occurrence, CSI has a seamless process in place for redesigning your current membrane switch without having to completely reinvent the wheel. We can work closely with your company in designing a drop-in replacement that will not require any product redesign or any changes for that matter on your end. CSI will update and upgrade all of the critical internal layers giving you the environmental sealing required while leaving the external layers untouched – leaving you with a completely sealed product upgrade that can be smoothly incorporated into your existing production line.

So what you waiting for?! If you are unhappy with your current membrane switch, now is the time to make the change. Reach out to CSI today to get the ball rolling and eliminate these headaches once and for all!

CSI Develops Backlit Pendant Switch for Agricultural Application

CSI Develops Pendant Switch for Agricultural Application

Product: Agricultural Product

Case: Customer approached CSI requiring a backlit and sealed pendant keypad solution that would be able to withstand heavy usage outdoors with many of its users wearing gloves.

CSI Final Solution:

    • Rubber keypad with 8 dome switches
    • Keypad backlit using LEDs and rubber with laser etched symbols
    • Printed circuit board based assembly with dome switches, LEDs, and rear mounted connector
    • Rubber designed and manufactured to wrap around PCB in order to completely seal the keypad’s circuitry
    • Rear foam adhesive for mounting to customer’s case

CSI Engineers & Manufactures HMI for Handheld Medical Device

CSI Engineers & Manufactures HMI for Handheld Medical Device

 

Product: Handheld Medical Device

Case: Customer partnered with CSI to design and manufacture two keypads that would be integrated into a handheld medical device. Major requirements included tactile feel requirement, sealing and durability.

CSI Final Solution:

  • Molded rubber keypad assembly for the Control Button
  • Copper flex circuit
  • 5 keys with light force domes as the primary users of the product are elderly
  • Rubber keypad assembly is mounted to a custom plastic backer plate for rigidity
  • Circuit has a tail prepped for a ZIF connection in the main product’s printed circuit board assembly
  • CSI also designed and manufactured the Power Button which is also a molded silicone rubber keypad that mounts into the plastic enclosure/case and actuates a mechanical switch on the main product’s printed circuit board assembly

CSI Develops UI for Emergency Vehicle Lighting

CSI Develops UI for Emergency Vehicle Lighting

Product: Emergency Vehicle

Case: Customer contracted with CSI to design and manufacture a user interface that would be mounted inside of an emergency vehicle. Major requirements included backlighting, sealing and durability.

CSI Final Solution:

  • Molded rubber keypad
  • Epoxy coated key caps
  • Backlit keys
  • LED indicators depicting which lights on the vehicle are in use
  • Printed circuit board based assembly with dome switches, LEDs, components, thru-holes for mounting to dashboard

CSI Develops Toggle Switch for Agricultural Application

CSI Develops Toggle Switch for Agricultural Application

Product: Agricultural Vehicle

Case: Customer approached CSI requiring a backlit and sealed toggle keypad solution that would be able to withstand heavy usage.

CSI Final Solution:

  • CSI patented toggle switch design
  • Rubber base with laser etched symbols for backlighting
  • Printed circuit board based assembly with dome switches, LEDs, and rear mounted connector
  • Rear adhesive for mounting to customer’s case

Mechanically Mounted & Fastened Keypads

Mechanically Mounted & Fastened Keypads

While the majority of keypad assemblies are simply adhered to the end product using rear pressure sensitive adhesive (PSA), in some cases the product design calls for mechanical mounting. Mechanically fastening the keypad assembly not only provides additional mounting support and rigidity, it also prevents the keypad from being removed or pried from the front (in many cases for security purposes) and allows our customers the flexibility to remove the keypad assemblies out in the field when required. 

The rubber keypad assembly shown below is used in an outdoor lockbox application and has the following design features: 

  • Mechanically fastened using 10 PEM studs that are integrated into the metal backer.
  • Backlit keys using LEDs, light guide film, light piping and laser etching technology.
  • Environmentally sealed utilizing the rubber which wraps around the entire assembly acting as a sealed gasket.
  • Tactile keys using metal domes.
  • Cable assembly with female connector soldered and sealed to the PCB for connection to customer’s PCB. 
Rubber Keypad Mounted to Outdoor Lock Box
Rubber Keypad with PEM Studs for Mounting
Rear View of Rubber Keypad with PEM Studs